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Fokker-Planck equation for the energy cascade in turbulence
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We present a detailed analysis of the energy dissipation averaged over a distgncen terms of a
stochastic process through scales. Using experimental data recorded in a low temperature helium jet, we give
evidence that the probability density function ofép) obeys a Fokker-Planck equation. The drift and diffusion
coefficients are calculated directly from the data. The drift is linear ig,)néind the diffusion is constant. With
these coefficients, the equation can be solved exactly, giving a Gaussian probability density functiog Yor In(

The mean and variance of this quantity are discussed in comparison with other log-normal models of inter-
mittency.[S1063-651X97)12911-1

PACS numbdis): 47.27.Gs, 47.27.Jv

The kinetic energy of a macroscopic flow must eventuallyto satisfy the Chapman-Kolmogorov equation. Moreover, the
be dissipated into heat. In turbulent flows, the dissipation du®DF of the velocity increments was shown to follow a
to molecular viscosity occurs on scales that can be mucRkokker-Planck equation in scales, with linear drift and qua-
smaller than the large scale motions. Vortices of all sizeglratic diffusion coefficients in the inertial range.
organize in such a way that their nonlinear interactions allow In the present study we perform a similar analysis but
for a net energy flux from large to small scales. This transfocus our attention on the quantity, =In(e,) at different
port process through scales is traditionally called “cascade.’scalesr. For convenience and without loss of generality, we
The first phenomenological cascade model, proposed byse in the following the logarithmic scale=In(L/r), where
Kolmogorov in 1941, assumes that the energy flux throughhe reference. is the integral scale, the largest scale of the
scales is constant, and thus equals the mean energy dissigiyw. We show that the conditional PDF of, obeys the
tion [1]. Chapman-Kolmogorov equation. Therefofgis very likely

Later, it became evident that it is necessary to take intao be a Markov process ih. We calculate the Kramers-
account the fluctuations of the energy flux to describe thevioyal coefficients that are vanishing, except the first and
actual turbulence, at finite Reynolds numbers[Re These  second. The equation governing the PDXpfs then simply
fluctuations cause the non-Gaussian statistics of the velocitthe Fokker-Planck equation, as for the velocity increments.
increments, a phenomenon called intermitteri@y4]. In The two nonvanishing coefficients, the drift and diffusion,
1962, Kolmogorov and Obukhov pointed out the importanceare found to be linear and constant, respectively. With these
of the energy dissipation averaged over a volume of sjze coefficients, it is possible to solve exactly the Fokker-Planck
which is approximated in the case of locally homogeneougquation, with the natural assumption tbqtdoes not fluc-

and isotropic turbulence by tuate at large scale. The PDF of thgsolution of this equa-
2 tion is Gaussian, the mean and variance dependence on scale
. (x)=@ x+r/2(d_v) ) 1 e given. A peculiarity of the local energy transfer from on
r rJx—r2\dx' ’ scale to the next one is to be asymmetric. A large decrease of

X, is more likely to happen than a large increase. We show
where v denotes the kinematic viscosity andthe longitu- that this effect, which is not taken into account in the
dinal velocity component. Conjecturing thatis a multipli-  Fokker-Planck equation, does not affect significantly the
cative process through scales, they invoked the central limiGaussian solution. Recently, a quantity called “depth of the
theorem to predict that for sufficiently small scales this quancascade” has been introduced to characterize the intermit-
tity should have log-normal fluctuations; i.e., the fluctuationstency of velocity increments in different flows. We show that
of In(e,) should be Gaussidi3]. In this theory, as well as in the variance ofX; obtained as a solution of the Fokker-
many others such as multifractal or shell models, it is implic-Planck equation gives a precise description of this quantity
ity assumed that the coupling is local in scale through theover the wole inertial range, up to the largest scales of the
cascade processf. [5]). flow.

Only recently, this hypothesis has been investigated by a We use a velocity sample of 1@oints, recorded in a low
direct analysis of experimental dafé]. In that work, the temperature helium jet at Re20 000, R, =328 [7,8]. The
conditional probability density function€DPF) of velocity =~ measurement of one component of the velocity has been per-
increments at two different scales were evaluated, and showiermed with a cryogenic hot-wire anemomefét located in
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i Dp(Xy)=— lim ——— [ (X;—=X,)"P(X|X5)dX;. (4
-1.56 0.715  0.127 0.97 n(X2) n!,zlinlllz—llj( 17 Xo) "P(Xe[Xz)dX;. (4)
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4" These coefficients can be calculated directly from the
f{ X /ﬁ/ \ data, at a finite scale ratio. We uskg-1,=0.04 (that is,
~ 2 ’ Y r,/r,=1.04), below which the resolution of the velocity is
i / /’% \ no longer sufficient. Figure 2 preserds (X,) and D,(X|)
g‘ -4 for several scales covering the whole inertial range. The first
R / t Kramers-Moyal coefficient is linear, and the second one is
= K% 1 approximately constant except for small values ot small
-6 I ”V o scale. In that case, the calculation is affected by the 11-bit
/%W W digitalization of the velocity signal. The slope Df; and the
-8 ' 5 value of D, are both independent of scale in the inertial
M“ L range. We will assume that at the linhjt—14:
-10 3 5 1 o 1 > D1(X)=y(Xi = (X)) +F(), )
Xy <X,> D(X)=D,

FIG. 1. Experimental verification of the Chapman-Kolmogorov where(X,) denotes the mean value ¥f. The additive func-
equation. The conditional histograf(X,|X,) calculated directly  tjon F(l) is derived below from an energy conservation con-
(dotted ling and according to the right-hand side of the Chapman-djtion [cf. Equation (10)]. We measured from Fig. 2
Kolmogorov equation(solid line) is plotted for four values of y=0.21+0.02 andD = 0.03+0.005.

X;1—(X;) (written above the histograms The scales are We have also evaluated,, which is less than 0.08(,)2.

r1/7=200.r2/%=100, andr3/»=142 (7 is the Kolmogorov vis-  \ye il thus assume thab, vanishes in the limit,— ;.

cous scalp Pawula’s theorem implies that d,=0, thenD5 as well as
all higher order coefficients vani$ti0]. The Kramers-Moyal

the center of the jet, at 10 cm from the 2 mm diameterexpansion reduces to the Fokker-Plank equaiibppandD,
nozzle. At this distance, the flow is completely turbulent. being the drift and diffusion coefficients.

Using the Taylor hypothesig; has been evaluated according A jinear drift and constant diffusion coefficients are char-
to Eq. (1) from the longitudinal velocity component. acteristic of an Ornstein-Uhlenbeck procg$§]. One may

Let P(X|X,) denote the conditional PDF of observing a note that here, unlike the examples of Ornstein-Uhlenbeck
valueX, at scald , under the_gondmon that, is realized at processes usually discussed, the slgpef the drift is posi-
scalel,. A necessary condition for a conditional PDF to tjye As a consequence, the process is not relaxing to station-
describe a Markov process is the Chapman-Kolmogoroyyity after a transient regime. We will see in the following
equation[10,11]: that the variance monotonously increases as the cascade de-
velops toward smaller scales.

It is natural to assume thaf does not fluctuate at the
largest scald =0, that there are no fluctuations at scales
larger than the size of the system. We will thus take as the
initial condition for the Fokker-Planck equation a Dirac dis-
tribution at large scale:

P(X2|X1)=J P(X3|X3) P(X3|X1)d Xz

forany I,>15>1;. 2

This equation can be checked experimentally. We calcu- P(Xg) = 8(Xo—In(e€)), (6)
late the conditional histograms for sets of scdlgd,,!;.
Then we compare the conditional histograR(x,|X;) cal-  where(e) denotes the mean dissipation. The PDFXpffor
culated directly with that calculated according to the right-all scales can be obtained as an exact solution of the Fokker-
hand side of Eq(2). Figure 1 shows cross-sections of this Planck equatiof10]. It is Gaussian:
histogram for several values of;. A good agreement is

observed. Moreover, we have checked that @y holds for 1 (X —(X))?
any scale ratio and at all scales, down to the dissipative ones. P(X|[Xg)= —==expg — — | (7)
The Chapman-Kolmogorov equation can be formulated in A‘/ﬁ 2A
differential form leading to the so-called Kramers-Moyal ex- . .
pansion[10]: The mean and the variance are given by
d
g xo=F), ®

a - "
“TPOXGIX)= 2 (= 1)"——=Dp(X)P(Xa|Xy).  (3)
al n=1 X5

A%(h)= E(6‘27'—1) C)
The Kramers-Moyal coefficients are defined as 0% '
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FIG. 2. Drift D; (a) and diffusionD, (b) for various values of
the scaler/ =400, 200, 100, 505 being the Kolmogorov viscous
scale.(c) showsD;—F(l), whereF(l) is a function discussed in
the text.
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FIG. 3. A typical fluctuation amplitude—A?%/2+A/2 of
X,—{X,) for all scales(dotted ling, compared to the “boundary”
I=In(L/r) (solid line) vs scalel.

Moreover, as the energy is conserved through the cascade,
the mean dissipatio(e;) must be independent of With the

PDF given by Eq(7), the scale dependence @f,) is easily
obtained:

(X)=(Xo)—A?/2. (10)
A comparison with Eq(8) yields
F(l)=—-De*". (11)

We show in Fig. Zc) that the curve®,—F(l) for different
scales collapse on a unique one. This indicates the consis-
tence of our description of the cascade with the energy con-
servation condition through scales.

At this point, one may wonder about the limitation of the
cascade model presented so far. We now discuss the conse-
quence of a peculiar property ef on the shape of the con-
ditional PDF. The accessible valuesepfare restricted by the
following relationship(see alsd12)):

e,<e €27t with  1,>1,, (12)

which follows directly from the definition of;. This con-
straint causes the conditional PDF to be more and more
asymmetric inX,, asl, is chosen closer tb, (see Fig. 1
Thus, the log variable¥, always have to fulfill the condi-
tion:

Xi<{Xg)+1. (13

An important question is whether, for largethe influence

of this asymmetry on the PDF is negligible or not. In other
words, as this feature is not taken into account in the Fokker-
Planck equation, how reliable is the Gaussian PDF solution
of this equation ? The fluctuations ¥f are centered around
the mean value given by E@L0). The sum of(X;) and half

of the standard deviatioA gives a typical fluctuation am-
plitude: (Xo)—A?/2+A/2. It can be compared to the
“boundary” (Xg)+I of Eqg. (13). In Fig. 3, we plotted
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—A?/2+ A/2 and| for all scales. Fol large enough, the 0.2
typical fluctuations ofX; are always far from the region for- "

bidden by Eq.(13). Therefore, even if the Fokker-Planck // T
X

equation does not take into account local properties of thi

energy transfer, its Gaussian solution is a fairly good ap ~ 0-15
proximation. For finitey, in the range of scalds>0, A? can 8n
be written as

D 0.1 Ve

A2=—e?", (14)
Y

7\’2

Such a dependence was predicted by Casteiirag. [13] for 0.05 r
a quantityA? proportional toA?. This important parameter

A2, called “depth of the cascade,” characterizes the intermit-

tency of velocity incrementgl4]. It has been recently mea-

sured independently in different flows such as jEIs8], 0
Taylor-Couette flowg15], grid flows, wind tunnel, and at- 0 0.2 0.4 0.6 0.8 1
mospheric boundary lay¢i6]. For Re>10 000,12 exhibits A?

a power law inr, in an intermediate range of scales. The FIG. 4. The functiol\? measured as ifi7] plotted vsA? ob-
exponent  has been measured carefully, and proven to béained from Eq(14).

inversely proportional to fRe), over 4 decades of Reynolds
number(see[16] for a review. At the limit of infinite Re,y
goes to 0. With the drift and diffusion coefficients obtained

here, one can see in Fig. 4 that the variacegiven by Eq. tion, where the drift term is linear iiX; and the diffusion

(8) is related linearly to\? calculated as ifi7]. As a major PR o
improvement for the velocity statistics, E@) describes the coefflqent IS C‘?”S“'?‘”t- For sufficiently _smal! scal_es, the PDF
of X, is Gaussian, in agreement on this point with Kolmog-

evolution of the depth of the cascade, not only in an inter- rov and Obukhov's model. The scaling of the velocity in-
mediate range of scales, but over the whole inertial range, u ) o g of the velocity
to the integral scale of the flow. In the viscous range o rements is preserved with a log-normal distributionepf

scales, i.e., for the largest values®f, a slight curvature is Onl}é Ifl A;(A) |st|near ||1nl, asin Kollm'é)go(;ov. an((jj (f)bUkhthS
observed. This may be again a consequence of the sign Okke.r Pl Ertla(ore, tti en ei)(pzﬁssuf]t?’diiim;ewmr]o;?] t ?(i
digitalization, more sensible in this region of large variancelt OKke _f anc equal'o ’ fsth COI "."t ctio t ?)e| s
as realizations of very smad, are not well resolved. One ence of a pure scafing of In€ velocily increments. Lnly in

may note that the curve on Fig. 4 does not pass through zel%1e I_|m|t of infinite ngr_mlds number, where—0, is a pure

as expected. Our interpretation for this feature is that in rea?Callng of the velocity increments.
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some temporal fluctuations &f remain at large scale, add- pean Community and the Japanese Society for the Promotion
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have shown that the conditional PDF Xf = In(e) fulfills
the Chapman-Kolmogorov equation. The equation governing
the scale dependence of this PDF is a Fokker-Planck equa-
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