
PHYSICAL REVIEW E DECEMBER 1997VOLUME 56, NUMBER 6
Fokker-Planck equation for the energy cascade in turbulence
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We present a detailed analysis of the energy dissipation averaged over a distancer ,e r , in terms of a
stochastic process through scales. Using experimental data recorded in a low temperature helium jet, we give
evidence that the probability density function of ln(e r) obeys a Fokker-Planck equation. The drift and diffusion
coefficients are calculated directly from the data. The drift is linear in ln(e r) and the diffusion is constant. With
these coefficients, the equation can be solved exactly, giving a Gaussian probability density function for ln(e r).
The mean and variance of this quantity are discussed in comparison with other log-normal models of inter-
mittency.@S1063-651X~97!12911-7#

PACS number~s!: 47.27.Gs, 47.27.Jv
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The kinetic energy of a macroscopic flow must eventua
be dissipated into heat. In turbulent flows, the dissipation
to molecular viscosity occurs on scales that can be m
smaller than the large scale motions. Vortices of all si
organize in such a way that their nonlinear interactions al
for a net energy flux from large to small scales. This tra
port process through scales is traditionally called ‘‘cascad
The first phenomenological cascade model, proposed
Kolmogorov in 1941, assumes that the energy flux throu
scales is constant, and thus equals the mean energy dis
tion @1#.

Later, it became evident that it is necessary to take i
account the fluctuations of the energy flux to describe
actual turbulence, at finite Reynolds numbers Re@2#. These
fluctuations cause the non-Gaussian statistics of the velo
increments, a phenomenon called intermittency@3,4#. In
1962, Kolmogorov and Obukhov pointed out the importan
of the energy dissipation averaged over a volume of sizr ,
which is approximated in the case of locally homogene
and isotropic turbulence by

e r~x!5
15n

r E
x2r /2

x1r /2S dv

dx8
D 2

dx8, ~1!

wheren denotes the kinematic viscosity andv the longitu-
dinal velocity component. Conjecturing thate r is a multipli-
cative process through scales, they invoked the central l
theorem to predict that for sufficiently small scales this qu
tity should have log-normal fluctuations; i.e., the fluctuatio
of ln(e r) should be Gaussian@3#. In this theory, as well as in
many others such as multifractal or shell models, it is imp
itly assumed that the coupling is local in scale through
cascade process~cf. @5#!.

Only recently, this hypothesis has been investigated b
direct analysis of experimental data@6#. In that work, the
conditional probability density functions~PDF! of velocity
increments at two different scales were evaluated, and sh
561063-651X/97/56~6!/6719~4!/$10.00
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to satisfy the Chapman-Kolmogorov equation. Moreover,
PDF of the velocity increments was shown to follow
Fokker-Planck equation in scales, with linear drift and qu
dratic diffusion coefficients in the inertial range.

In the present study we perform a similar analysis b
focus our attention on the quantityXr5 ln(e r) at different
scalesr . For convenience and without loss of generality, w
use in the following the logarithmic scalel 5 ln(L/r ), where
the referenceL is the integral scale, the largest scale of t
flow. We show that the conditional PDF ofXl obeys the
Chapman-Kolmogorov equation. ThereforeXl is very likely
to be a Markov process inl . We calculate the Kramers
Moyal coefficients that are vanishing, except the first a
second. The equation governing the PDF ofXl is then simply
the Fokker-Planck equation, as for the velocity incremen
The two nonvanishing coefficients, the drift and diffusio
are found to be linear and constant, respectively. With th
coefficients, it is possible to solve exactly the Fokker-Plan
equation, with the natural assumption thatXl does not fluc-
tuate at large scale. The PDF of theXl solution of this equa-
tion is Gaussian, the mean and variance dependence on
are given. A peculiarity of the local energy transfer from
scale to the next one is to be asymmetric. A large decreas
Xl is more likely to happen than a large increase. We sh
that this effect, which is not taken into account in th
Fokker-Planck equation, does not affect significantly t
Gaussian solution. Recently, a quantity called ‘‘depth of
cascade’’ has been introduced to characterize the inter
tency of velocity increments in different flows. We show th
the variance ofXl obtained as a solution of the Fokke
Planck equation gives a precise description of this quan
over the wole inertial range, up to the largest scales of
flow.

We use a velocity sample of 107 points, recorded in a low
temperature helium jet at Re520 000,Rl5328 @7,8#. The
measurement of one component of the velocity has been
formed with a cryogenic hot-wire anemometer@9# located in
6719 © 1997 The American Physical Society
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the center of the jet, at 10 cm from the 2 mm diame
nozzle. At this distance, the flow is completely turbule
Using the Taylor hypothesis,e l has been evaluated accordin
to Eq. ~1! from the longitudinal velocity component.

Let P(X2uX1) denote the conditional PDF of observing
valueX2 at scalel 2 under the condition thatX1 is realized at
scale l 1. A necessary condition for a conditional PDF
describe a Markov process is the Chapman-Kolmogo
equation@10,11#:

P~X2uX1!5E P~X2uX3!P~X3uX1!dX3

for any l 2. l 3. l 1 . ~2!

This equation can be checked experimentally. We ca
late the conditional histograms for sets of scalesl 2 ,l 3 ,l 1.
Then we compare the conditional histogramsP(X2uX1) cal-
culated directly with that calculated according to the rig
hand side of Eq.~2!. Figure 1 shows cross-sections of th
histogram for several values ofX1. A good agreement is
observed. Moreover, we have checked that Eq.~2! holds for
any scale ratio and at all scales, down to the dissipative o
The Chapman-Kolmogorov equation can be formulated
differential form leading to the so-called Kramers-Moyal e
pansion@10#:

]

] l
P~X2uX1!5 (

n51

`

~21!n
]n

]X2
n

Dn~X2!P~X2uX1!. ~3!

The Kramers-Moyal coefficients are defined as

FIG. 1. Experimental verification of the Chapman-Kolmogor
equation. The conditional histogramP(X2uX1) calculated directly
~dotted line! and according to the right-hand side of the Chapm
Kolmogorov equation~solid line! is plotted for four values of
X12^X1& ~written above the histograms!. The scales are
r 1 /h5200,r 2 /h5100, andr 3 /h5142 (h is the Kolmogorov vis-
cous scale!.
r
.

v

-

-

s.
n

Dn~X2!5
1

n!
lim

l 2→ l 1

1

l 22 l 1
E ~X12X2!nP~X1uX2!dX1 . ~4!

These coefficients can be calculated directly from
data, at a finite scale ratio. We usedl 22 l 150.04 ~that is,
r 1 /r 251.04), below which the resolution of the velocity
no longer sufficient. Figure 2 presentsD1(Xl) and D2(Xl)
for several scales covering the whole inertial range. The fi
Kramers-Moyal coefficient is linear, and the second one
approximately constant except for small values ofe l at small
scale. In that case, the calculation is affected by the 11
digitalization of the velocity signal. The slope ofD1 and the
value of D2 are both independent of scale in the inert
range. We will assume that at the limitl 2→ l 1:

D1~Xl !5g~Xl2^Xl&!1F~ l !, ~5!

D2~Xl !5D,

where^Xl& denotes the mean value ofXl . The additive func-
tion F( l ) is derived below from an energy conservation co
dition @cf. Equation ~10!#. We measured from Fig. 2
g50.2160.02 andD50.0360.005.

We have also evaluatedD4, which is less than 0.05(D2)2.
We will thus assume thatD4 vanishes in the limitl 2→ l 1.
Pawula’s theorem implies that ifD450, thenD3 as well as
all higher order coefficients vanish@10#. The Kramers-Moyal
expansion reduces to the Fokker-Plank equation,D1 andD2
being the drift and diffusion coefficients.

A linear drift and constant diffusion coefficients are cha
acteristic of an Ornstein-Uhlenbeck process@10#. One may
note that here, unlike the examples of Ornstein-Uhlenb
processes usually discussed, the slopeg of the drift is posi-
tive. As a consequence, the process is not relaxing to sta
arity after a transient regime. We will see in the followin
that the variance monotonously increases as the cascad
velops toward smaller scales.

It is natural to assume thate l does not fluctuate at the
largest scalel 50, that there are no fluctuations at scal
larger than the size of the system. We will thus take as
initial condition for the Fokker-Planck equation a Dirac di
tribution at large scale:

P~X0!5d~X02 ln^e&!, ~6!

where^e& denotes the mean dissipation. The PDF ofXl for
all scales can be obtained as an exact solution of the Fok
Planck equation@10#. It is Gaussian:

P~Xl uX0!5
1

LA2p
expF2

~Xl2^Xl&!2

2L2 G . ~7!

The mean and the variance are given by

d

dl
^Xl&5F~ l !, ~8!

L2~ l !5
D

g
~e2g l21!. ~9!

-
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FIG. 2. Drift D1 ~a! and diffusionD2 ~b! for various values of
the scaler /h5400, 200, 100, 50,h being the Kolmogorov viscous
scale.~c! showsD12F( l ), whereF( l ) is a function discussed in
the text.
Moreover, as the energy is conserved through the casc
the mean dissipation̂e l& must be independent ofl . With the
PDF given by Eq.~7!, the scale dependence of^Xl& is easily
obtained:

^Xl&5^X0&2L2/2. ~10!

A comparison with Eq.~8! yields

F~ l !52De2g l . ~11!

We show in Fig. 2~c! that the curvesD12F( l ) for different
scales collapse on a unique one. This indicates the con
tence of our description of the cascade with the energy c
servation condition through scales.

At this point, one may wonder about the limitation of th
cascade model presented so far. We now discuss the co
quence of a peculiar property ofe l on the shape of the con
ditional PDF. The accessible values ofe l are restricted by the
following relationship~see also@12#!:

e2,e1el 22 l 1 with l 2. l 1 , ~12!

which follows directly from the definition ofe l . This con-
straint causes the conditional PDF to be more and m
asymmetric inX2, as l 1 is chosen closer tol 2 ~see Fig. 1!.
Thus, the log variablesXl always have to fulfill the condi-
tion:

Xl,^X0&1 l . ~13!

An important question is whether, for largel , the influence
of this asymmetry on the PDF is negligible or not. In oth
words, as this feature is not taken into account in the Fokk
Planck equation, how reliable is the Gaussian PDF solu
of this equation ? The fluctuations ofXl are centered around
the mean value given by Eq.~10!. The sum of̂ Xl& and half
of the standard deviationL gives a typical fluctuation am
plitude: ^X0&2L2/21L/2. It can be compared to th
‘‘boundary’’ ^X0&1 l of Eq. ~13!. In Fig. 3, we plotted

FIG. 3. A typical fluctuation amplitude2L2/21L/2 of
Xl2^X0& for all scales~dotted line!, compared to the ‘‘boundary’’
l 5 ln(L/r ) ~solid line! vs scalel .
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2L2/21L/2 and l for all scales. Forl large enough, the
typical fluctuations ofXl are always far from the region for
bidden by Eq.~13!. Therefore, even if the Fokker-Planc
equation does not take into account local properties of
energy transfer, its Gaussian solution is a fairly good
proximation. For finiteg, in the range of scalesl @0, L2 can
be written as

L25
D

g
e2g l . ~14!

Such a dependence was predicted by Castainget al.. @13# for
a quantityl2 proportional toL2. This important paramete
l2, called ‘‘depth of the cascade,’’ characterizes the interm
tency of velocity increments@14#. It has been recently mea
sured independently in different flows such as jets@7,8#,
Taylor-Couette flows@15#, grid flows, wind tunnel, and at
mospheric boundary layer@16#. For Re.10 000,l2 exhibits
a power law inr , in an intermediate range of scales. T
exponent 2g has been measured carefully, and proven to
inversely proportional to ln~Re!, over 4 decades of Reynold
number~see@16# for a review!. At the limit of infinite Re,g
goes to 0. With the drift and diffusion coefficients obtain
here, one can see in Fig. 4 that the varianceL2 given by Eq.
~8! is related linearly tol2 calculated as in@7#. As a major
improvement for the velocity statistics, Eq.~9! describes the
evolution of the depth of the cascade, not only in an int
mediate range of scales, but over the whole inertial range
to the integral scale of the flow. In the viscous range
scales, i.e., for the largest values ofL2, a slight curvature is
observed. This may be again a consequence of the si
digitalization, more sensible in this region of large varian
as realizations of very smalle l are not well resolved. One
may note that the curve on Fig. 4 does not pass through
as expected. Our interpretation for this feature is that in r
flows, where the Taylor hypothesis is not perfectly fulfille
some temporal fluctuations ofe l remain at large scale, add
ing a constant term on the fluctuations at all scales.

To summarize, the averaged dissipatione l at scalel has
been investigated as a stochastic process through scales
e
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e

-
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have shown that the conditional PDF ofXl 5 ln(e l) fulfills
the Chapman-Kolmogorov equation. The equation govern
the scale dependence of this PDF is a Fokker-Planck e
tion, where the drift term is linear inXl and the diffusion
coefficient is constant. For sufficiently small scales, the P
of Xl is Gaussian, in agreement on this point with Kolmo
orov and Obukhov’s model. The scaling of the velocity i
crements is preserved with a log-normal distribution ofe l
only if L2( l ) is linear inl, as in Kolmogorov and Obukhov’s
model. Therefore, the expression~8!, derived from the
Fokker-Planck equation, is in contradiction with the ex
tence of a pure scaling of the velocity increments. Only
the limit of infinite Reynolds number, whereg→0, is a pure
scaling of the velocity increments.
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FIG. 4. The functionl2 measured as in@7# plotted vsL2 ob-
tained from Eq.~14!.
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